Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 50-1 (2017) 1276512772

Real-Time Finger Gaits Planning for
Dexterous Manipulation **

Yongxiang Fan* Wei Gao ** Wenjie Chen ***
Masayoshi Tomizuka *

* Department of Mechanical Engineering, University of California,
Berkeley, CA, 94720, USA (e-mail: {yongxiang_fan,
tomizuka} @berkeley.edu).

** School of Aerospace, Tsinghua University, Beijing, 100084, P. R.
China (e-mail: gaow13@mails.tsinghua.edu.cn)

** FANUC Corporation, Yamanashi Prefecture, 401-0597, Japan
(e-mail: wichen@berkeley.edu)

Abstract:

Dexterous manipulation has broad potential applications in assembly lines, warehouses and
agriculture, and so on. To perform large-scale, complicated manipulation tasks, a multi-fingered
robotic hand sometimes has to sequentially adjust its grasping status, i.e. the finger gaits, to
deal with the workspace limits and object stability. However, realizing finger gaits planning
in dexterous manipulation is challenging due to the involved hybrid dynamics, complicated
grasp quality metrics, and uncertainties during the finger gaiting. In this paper, a dual-stage
optimization based controller is proposed to handle these challenges. First, a velocity-level finger
gaits planner is introduced by combining object grasp quality with hand kinematic limitations.
The proposed finger gaits planner is computationally efficient and can be solved in real-time.
Second, a manipulation controller using force optimization is presented. To deal with mass
uncertainties and external disturbances, a modified impedance control is integrated into the
manipulation controller. The dual-stage controller does not require the shape of the object, nor
does it rely on expensive 3D/6D tactile sensors. Simulation results verify the efficacy of the
proposed dual-stage controller.
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1. INTRODUCTION

Dexterous manipulation is essential for manipulators to
execute complicated tasks, such as circuit assembly, com-
modity organizing, and fruit harvesting. To perform large-
scale complex manipulations, a robotic hand may have to
change its grasping status by relocating fingers during the
manipulation, which gives the hand more dexterity and
robustness. Such strategy is called finger gaits planning.
However, finger gaits planning in dexterous manipulation
is difficult due to factors such as high dimensionality, inter-
mittent contact dynamics, and complicated grasp quality
metrics.

As a result, problems related to dexterous manipulation
and finger gaits planning have received significant atten-
tion. Bicchi (2000) summarized the challenges of dexterous
manipulation and finger gaiting, namely, the analysis and
control of hybrid systems during gaits planning, and the
optimization of the plans. Khalil and Payeur (2010) re-
viewed modeling and control techniques during the robot-
environment interaction.

* The order of the first two authors was determined by a coin toss.
**This project was supported by FANUC Corporation.

Kumar et al. (2016) learned a local model for dexter-
ous manipulation by reinforcement learning. Erez et al.
(2014) achieved a lifting task robustly by applying model
predictive control. Ciocarlie and Allen (2009) searched
hand posture subspaces by simulated annealing method
to realize pre-grasping in interactive grasping tasks. Liu
(2009) achieved dexterous manipulation by using contact
force planning and hand motion synthesis. However, none
of them handled objects with large-scale motions in con-
strained workspaces.

An effective solution to the limited hand workspaces is
finger gaits planning. Andrews and Kry (2013) trained
task-specific finger gaiting policies by the covariance ma-
trix adaptation method, given the goal states of objects.
However, the learned policies cannot be adapted to other
objects and tasks. Furukawa et al. (2006) used a high-speed
hand and a high-speed vision system to perform dynamic
re-grasping. However, the object model should be precisely
known, and the presented success rate (35%) is not suitable
for many applications. Li et al. (2014) learned impedance
parameters from human demonstration for robust grasping
and dexterous manipulation. Vinayavekhin et al. (2011)
used a tangle topology to reproduce object pose from
learned human demo. However, the object gravity is not
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considered during their gaits changing process. Platt Jr
(2006) proposed a set of controllers to realize unknown
object grasping by sliding on the surface to maximize
grasp stability. Platt et al. (2004); Mordatch et al. (2012)
explored the unknown surface of the object by designing
a global re-grasping planner and searching local optimal
contact points. However, predefined finger gaits are used
in these approaches, and the exploration of local optima
does not incorporate necessary constraints, such as joint
velocity and acceleration limitations. As a result, these ap-
proaches tend to be slow in re-grasping and manipulation,
and the predefined finger gaits might be inapplicable to
other objects and robotic hands. Xu et al. (2010) used
a sampling-based method to plan finger gaits. Mordatch
et al. (2012) used contact-invariant optimization method
to compute the states of the hand and the object, given
the high-level goals. These approaches are not computa-
tionally efficient for real-time finger gaits planning.

In this paper, a dual-stage optimization based controller
is developed, which consists of a finger gaits planner and a
manipulation controller. Instead of formulating the finger
gaits planner in position-level, which results in a com-
plicated non-linear constrained optimization problem, the
finger gaits planner is formulated in the velocity level,
i.e., the joint velocity ¢ is selected to be the decision
variable. At each time step, an optimal joint velocity is
computed to improve the hand manipulability as well as
the object grasp quality, and the calculated joint velocity
is converted to joint torque by a velocity-force controller.
The proposed manipulation controller consists of a con-
tact force optimizer and a joint-level torque controller.
An impedance control scheme is incorporated into the
manipulation controller to deal with uncertainties such as
imprecise dynamic parameters and external disturbances.

The proposed dual-stage optimization based controller
achieves real-time finger gaits planning in dexterous ma-
nipulation, under the object and environment uncertain-
ties. To be more specific, the velocity-level finger gaits
planner is cast into a linear programming (LP) problem,
which is computationally efficient and can be solved in
real-time. Furthermore, the velocity-level gaits planning
incorporates joint kinematic constraints, which makes the
generated motions feasible. The proposed manipulation
controller can handle a certain amount of mass uncertain-
ties and external disturbances. The proposed dual-stage
optimization based controller does not rely on exact shapes
of the objects, nor does it require expensive 3D /6D tactile
sensors. The efficacy of the proposed controller is verified
by simulations. The video demo is available at Fan et al.
(2016).

This paper is organized as follows. Section 2 shows the
overall dual-stage optimization based controller frame-
work. Section 3 explains the grasp quality analysis. The
velocity-level gaits planner and manipulation controller
are presented in Section 4 and Section 5, respectively. Sec-
tion 6 shows simulation results on a robotic hand with four
fingers and twelve degrees of freedom (DOFs). Section 7
concludes the paper.
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2. OPTIMIZATION BASED CONTROLLER
FRAMEWORK

Figure 1 shows the proposed optimization-based controller
framework. First, a grasp quality analysis is conducted
by computing hand manipulability and object grasp qual-
ity, and the weakest finger is chosen to break contact
and change gait once the overall quality drops below a
predefined threshold. The index of the breaking finger is
denoted as I,. A velocity-level gaits planner is evoked by
this event, and the planner generates torque command 77,
to drive the selected breaking finger towards the better
quality region.The remaining fingers are controlled by a
manipulation controller to manipulate the object stably,
as shown in Fig. 1. If the overall quality is above the
threshold, all fingers will be controlled by the manipulation
controller.

A joint level torque tracking controller is also designed to
track the torque command. The torque tracking controller
uses a PID scheme and runs at a higher frequency, in
comparison with the gaits planner and the manipulation
controller.

Break index [, | Velocity-Level |71

. (7 }‘\F ge
Gaits Planner

k=1

Grasp Quality Torque Tracking
Analysis Controller
Manipulation l

Manipulate fingers Controller
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Fig. 1. The general framework of the proposed optimiza-
tion based controller.

The following sections will focus on the grasp quality anal-
ysis, the velocity level gaits planner, and the manipulation
controller, respectively.

3. GRASP QUALITY ANALYSIS

Grasp quality has been well explored in Roa and Sudrez
(2015); Kim et al. (2001); Murray et al. (1994). During
finger gaits planning, both hand manipulability and object
grasp quality should be considered. The hand manipu-
lability here means the ability for a hand to manipulate
the object to realize arbitrary motions. The object grasp
quality means the capacity to resist external disturbances
given a group of contact points on the object. In this paper,
we adopt a quality metric in Liegeois (1977) to represent
hand manipulability Qp:

1 Nriinger Njoint qi- _ (TL 2
Qn==3 2 2\ =i (1)
i = qmax7j - qmin,j
where q; is the joint angle of the i- th joint of the j-th finger,

qman and qmLXJ are the limits of q qJ (qmaXJ +qt J)/2
is the middle position of the correspondlng joint, Nﬁnger

and Njoint are the number of fingers, the number of joints
per finger, respectively.

The object grasp quality @, is adopted from Supuk et al.
(2005), which can be represented as:

o — 2Area (pl,PQaPLSaprOj(Plb)) (2)
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where p; means the contact position in Cartesian space
for the j-th fingertip, and py, indicates the position of the
free fingertip. proj(pr,) means the projection operation of
pr, onto the plane specified by p1, p2, ps. An illustration of
Q, is shown in Fig. 2.

P,

. P

Fig. 2. Object grasp quality illustration. We indicate the
case where the 4-th finger is relocating. p1,p2,ps3
are the static contact points, while pj, represents
the position of the 4-th fingertip. The shaded ellipse
indicates the plane specified by p1, p2, p3. The object
grasp quality used in this paper is the area of convex
hull formed by p1, p2, p3, z, where x is the projection
point of p7, onto the plane.

The overall quality ) can be obtained by combining (1)
and (2):

Q = w1Qo + w2y (3)

where w; > 0 is the weight for the corresponding term.

Once the overall grasp quality @ drops below a certain
threshold, the hand gaits should be replanned to adjust
contact points on the object. It is observed that humans
tend to relocate their fingers one by one during the finger
gaits planning. We adopt this philosophy and sequentially
plan the finger gaits. Thus, our algorithm will compare
all the fingers and choose one of them to initialize finger
gaits planning, if all fingertips are in static contacts and
Q < 0g, where dg is a threshold.

Our selection is based on the finger manipulability and the
grasp quality of the remaining fingers. To be more specific,
the finger manipulability for the I,-th finger is:

Njoint

P ; ; 2
- Z ((q}b - q}b)/(qunax,lb - qfnin,lb))
=1

The grasp quality of remaining fingers is the area of
convex hull spanned by remaining fingertips, for instance,
the triangle Apipops in Fig. 2. The preferred finger for
gaiting is the one with small finger manipulability and
large remaining grasp quality. If there is already one free
finger, that finger will continue its gaiting.

4. VELOCITY-LEVEL FINGER GAITS PLANNER

The task of the finger gaits planner is to generate com-
mands to change the contact location of a finger, to achieve
better object grasp quality and hand manipulability. In
this section, the related position-level gaits planner is first
presented; then the velocity-level gaits planner is proposed
to resolve the problems in a position-based planner.
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4.1 Position-Level Finger Gaits Planner

Position-level finger gaits planner consists of contact opti-
mization and trajectory planning. The contact optimiza-
tion finds optimal contact points under the overall grasp
quality (3), and the trajectory planning generates trajec-
tories to relocate fingers to optimal contact points.

The contact optimization can be represented in the follow-
ing form:

max @ (4a
5,41y,
s.t. b, S 80 (4b

||p1b 7p1b»0|| <e
b, = FK(QIb)
Gmin, I, S q1, S Gmax,I;

4
4e

o,

)
)
4c)
)
)

— T~ —

Constraint (4b) indicates that the fingertip position of
free finger p;, should be on the surface of object 0O.
Constraint (4c) means that the searching region should
be constrained in certain region e from original posi-
tion py, , to roughly keep the stability of the object.
Constraint (4d) is the forward kinematics of the robotic
hand. Constraint (4e) means that the joint space searching
should be in the feasible region.

After finding the optimal contact points, the trajectory
planning algorithm is required to generate a feasible tra-
jectory. Generally speaking, the trajectory planning should
be able to consider the kinematic constraints (e.g. joint
limits, velocity and acceleration constraints), the time
optimality to reach optimal contact points, and collision
avoidance with the object.

The position-level finger gaits planning has the following
drawbacks. First, the problem has non-linear equality con-
straints. Therefore, it is difficult for real-time computing.
Besides, this method requires a complicated trajectory
planning to reach the planed optimal point. Furthermore,
the equality constraint (4b) corresponding to object sur-
face is usually unknown in advance. Lastly, the contact
optimization (4) uses current pq, p2, and ps to find the op-
tima, while p1, p2, and p3 actually keep moving during the
contact optimization, trajectory planning and execution.

With the all listed issues above, an efficient velocity-level
finger gaits planner is proposed below.

4.2 Velocity-Level Finger Gaits Planner

The position-level finger gaits planner divides finger gaits
planning into a contact optimization and a trajectory
planning. Both of them are complicated and difficult to
solve in real-time. Therefore, an efficient approximation
of the position-level gaits planner is proposed, which is
called the velocity-level gaits planner. In this planner,
the contact optimization is modified into a short-term
optimization. To be more specific, rather than finding
an optimal contact point, an optimal moving velocity is
calculated at each time step, and the finger is actuated
to achieve that velocity. Formally, instead of optimizing Q)
in (3), Q is optimized with joint velocity of the I,-th finger
qr, as the decision variable. The solution Gqges,1, is used to
control the robotic hand in each time step.
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The intuition behind it is the Taylor series expansion. @
is a function of states {qr,,pr,}, and the states are the
functions of time t. Therefore, @ is a function of ¢. By this
interpretation, () in time instant ¢ + T can be written as:

Qt+Ty) = Q(t) + Q)T ()
where T is the time step. In this equation, higher order
terms have been omitted, because T is usually a small
period. Therefore, designing control policy to maximize
Q(t +T,) is equivalent to maximizing Q(t).

With the short term approximation, () becomes:

Q = w1Qo + wth

Njoint _i i
a7, — 4y, .
@ — i )2 4,
qmax,lz7 qmin,Ih

o= 3
i=1

Qo = [Ip2 —P3||2n1TU1b

where (j}b is joint velocity of the i-th joint of the I,-th
finger. n; is a normal vector of line segment pyp3 in the
plane specified by p1, p2, p3, as shown in Fig. 2, and vy, is
the velocity of pr,. In this optimization, the states g7, and
vy, in Qp and Q, are coupled linearly by vr, = J(q1,)d1,,
where J(qr,) is Jacobian of the finger I,. By plugging in
the coupled term, Q becomes:

(6)

Njoint
Q = wi||p2—psllani Jir,+w2 Y cf, —

) %
i—1 (qmax,lb ~ Gmin, 1,

Tf - q} .

b b )2 qu

, (7

The weighting function cj is added to (7) in order to
address joint limits:

111( Q}b - ‘q;nin,ll, - qghres )

i —q 7
3 7 + 17 (JIb - qlb < “lthres
47, — 9min, I,

i 7 — 7
CIb - 17 |qu - q1b| < Gthres

Dhae,r, — 1, — Gin
max, thres i 4 i
h’l( ib : 7 ) + 1’ Q}b - q}b > qéhres

qmax,fb - qlb
where ¢/, .. is a threshold where the weighting should be
increased.

In the meantime, constraints (4b) and (4d) of the contact
optimization (4) become nf J(qr,)qr, = 0, where ny, is the
surface normal at py,. The surface normal can be inferred
by the tactile sensor on the fingertip. The constraint (4c)
of (4) is eliminated because we are working on short-term
optimization, and the optimization would be solved in each
time step.

With above analysis, a new optimization problem can be
formulated to approximate (4):

max Q 8a
qr,
s.t. (jmin,lb S qu S Cjmax,]b

an(qu)qu =0

HCJIZ) - Qdes,prevHoo <o

The solution of (8) for the Ip-th finger is denoted as
ddes,1,- Constraint (8b) means that the joint velocity ¢y,
should be bounded in [¢min,1,; Gmax,1,]- Constraint (8c)
indicates that p;, in Fig. 2 must move perpendicular to
current surface normal ny,. Constraint (8d) means that
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the joint acceleration should be bounded by ¢/T5s. Gdes,prev
is the desired joint velocity in previous time step. The
optimization (8) is a linear programming, which can be
solved in real-time.

After obtaining the desired joint velocity Gges,1, by solv-
ing (8), a velocity-force controller is implemented to cal-
culate the desired torque of the I,-th finger:

TI, :Kv(qdes,lb - q(mct,Ib) + KfJ(QIb)T(fdes - fact,lb) ( )
9
where qges,7, and ¢act,7, are the desired and the actual
joint velocities, fqes and fact,r, are the desired and the
actual contact forces in normal direction. K, and Ky are
two gain matrices for the velocity and force components.
The actual normal contact force f,.t can be measured by
1D tactile sensor. The force component KfJ(qu)T(fdeS —
fact,,) in (9) attempts to maintain the contact between
the fingertip and the surface, which makes the normal
vector nj, measured from the tactile sensor updated.

As the optimized Cartesian velocity of the fingertip is
in the tangent space, the finger might break its contact
with the object if the curvature at the contact point is
excessively large. However, the force component in (9) will
drive the fingertip back to the surface. Consequently, the
gaiting finger might exhibit the behavior of short-range
jumps.

The velocity-level gaits planner that composed of (8) and
(9) has several advantages. First, the proposed planner
is computationally efficient. The optimization (8) is an
LP that can be solved in each time step. Second, the 3D
object model is not required. Instead, 1D tactile sensor
is applied to detect the contact point on the hand and
infer the surface normal by the known fingertip structure,
and the sensor update can be accomplished by the force
component in the velocity-force controller.

The grasp quality is expected to be improved at the begin-
ning of gaits planning. The velocity-level gaits planner can
be terminated when there is little grasp quality improve-
ment (e.g. @ < J, where ¢ is a small positive number).

4.3 Similarities Between Position-Level and Velocity-Level
Planners

In this section, we will demonstrate that the performance
of the velocity-level planner (i.e. linear programming (8)
and velocity-force controller) is similar to one step of (4)
if solved by gradient projection method (Rosen (1961)).
For notational simplicity, an abbreviated form of (4) is
considered:

(10)
where x is a concatenation of [p%;7 qg% Ib]T, equality con-

straints (4b) and (4d) are abbreviated as h(z) = 0,
inequality constraints (4c) and (4e) are represented as
g(x) <0.

mxaxQ s.t. h(z) =0,9(x) <0

In each step of the gradient projection method, the search
direction d is found by projecting V,@Q onto the tangent
space of equality constraints T = {y|V.hTy = 0}, as
shown in Fig. 3. Then, an iterative technique is employed
to project the points along d, such as ¢, onto h(z) = 0,
until the projected point xp41 lies in the set {z|h(z) =
0,9(x) < 0}.
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Fig. 3. Illustration of the gradient projection method. The
optimal searching direction is chosen by projecting the
gradient of the cost function onto the tangent space
T, then an iterative technique is employed to find the
best feasible projection xjy1.

In the proposed method, the optimal search direction is
found by LP (8). The joint-acceleration constraint (8d)
and the joint-velocity constraint (8b) are incorporated
into (8), instead of projecting the gradient into the tangent
space. Moreover, the velocity-force controller (9) attempts
to maintain the contact force between the fingertip and
the surface, as a physical actualization of projecting ¢ onto
h(z) = 0. As the LP (8) is solved in each time step T, the
search step Axp = xpi1 — xk is quite small. Thus, the
planned dqes,7, in (8) is usually smooth.

5. MANIPULATION CONTROLLER

Given the contact points between the fingertips and the
manipulated object, the task of the manipulation con-
troller is to generate torque commands for the hand to
drive the object to follow desired motions. The desired mo-
tion of the object is transformed into desired forces on the
object through impedance control, which is similar to Li
et al. (2014); Wimbdck et al. (2012). In this section, an
additional integral term is added to impedance controller
to address object mass uncertainty:

Finp =M%, + B4 (i — Baes) + KU (w0 — Tdes)+

e ( /0 t(xo - xdes)dt)

where Zdes, des, Tdes 1S the desired motion of the object,
Fo, &0, o is the actual motion of the object, and M9, B¢
and K% are the desired inertia, damping and stiffness,
respectively. I? is a gain matrix for additional integral
term.

(11)

The manipulation controller consists of a force optimizer
and a joint level torque controller. The force optimizer
finds desired contact force of each contact point, and the
joint level torque controller generates appropriate joint
torques to produce the contact forces.

The force optimization is formulated into a QP problem:

min | f[13 + azllf = forenl3 + s Al (120)
s.t. Mo(xo)jio + g(ajo) = Fdes + Emp (12b)
A = Faes — G(20,q)f (12c)
f=DBA (12d)
A>0 (12e)
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Fig. 4. The hand model that is used in the simulation. The
hand has four identical fingers and 12 DOFs. Each fin-
ger has three revolute joints J1, J2, and J3. The joint
angles of J1, J2 and J3 are constrained in [-10°, 135°],
[—45°,45°] and [—10°,170°], respectively. The hand
wrist is static with respect to the world.

where f = [fﬁ...,fﬁﬁngers]T is the contact force at the
contact frame, and fprev is the contact force of the previous
step. ¢ = [¢f, ..., qﬁfmgm]T is the joint angles of the hand,
and x, is the pose of the object. M,(x,) and g(x,) are the
object inertia and gravity of the object, G(x,, q) is called
grasp map (Murray et al. (1994)) and transforms f from
contact frame into object frame, B = diag{Bj, ..., By.}
and B; is a conservative pyramid approximation of friction
cone that is similar to the one in Liu (2009). A is the linear
coefficient of columns of B. The desired inertia M? is set
as M, in order to remove the inertia term and acceleration
measurement in the controller (11), as shown in Li et al.
(2014).

A slack variable A is introduced to relax the hard con-
straint Fgqes = Gf, because the location measurements
of contact points might be noisy. The entries of G for
I, are set to zero, since the breaking finger does not
have contribution to Fyes. The constraints (12d) and (12e)
together ensure that the contact forces remain within B.
The wights ai,as and a3 are used to balance between
different cost terms.

The joint level torque control takes the optimal contact
force f* from the force optimization as input, and yields
the control torque as:

T=Ju(@)" f* + N(q)

where 7 = [71, ..., TNguer s Jn(g)7 is the concatenated hand
Jacobian transpose that maps the force on each fingertip to
the torque of the joints, and N(q) is the gravitational force
of the hand. {74 }r+s, is extracted and combined with (9)
for torque tracking control.

6. SIMULATIONS

In this section, simulation results are presented to verify
the effectiveness of the proposed finger gaits planner and
manipulation controller. The simulation video is available
at Fan et al. (2016).
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(a) The rotation is limited by joint position bounds without the
proposed finger gaits planner.

(b) The cylinder achieves continuous rotation with the proposed
finger gaits planner.

Fig. 5. The hand rotates a cylinder with/without the
proposed finger gaits planner. Snapshots are from left
to right.

6.1 Simulation Setup

The controller is implemented in Mujoco physical engine,
which is introduced by Todorov et al. (2012). The simu-
lation time step is set to 2 ms. Our platform is a desktop
with 4.0 GHz Intel Core Quad CPU, 32GB RAM, running
Windows10 operating system.

The hand is set up with four identical fingers and twelve
DOFs, as shown in Fig. 4. Each finger has three revolute
joints J1, J2, and J3. The joint angles of J1, J2 and J3 are
constrained in [—10°,135°], [-45°,45°] and [—10°,170°],
respectively. The hand is equipped with high-resolution
position sensors for joint position/velocity measurements,
motor torque sensors for motor torque feedback, one-
dimensional distributive tactile sensors to measure normal
force and infer surface normal. The manipulated objects
are approximately 0.5 kg. The 3D mesh models of objects
are unknown to the controller. Rather, a vision system can
be employed to obtain the motion of the object by tracking
the features on it. Currently, the object motion is obtained
from the simulator. In future real world experiments,
methods in Horn and Schunck (1981) and Lim et al. (2010)
will be adopted to obtain the motion of the object.

6.2 Parameter Lists

The parameter values for the velocity-level finger gaits
planner are: wy = 0.99,wy = 0.01. gfj,.0q = 0.25(¢} 00 —
qfnin’k). Gmink = —1 rad/s, gmaxk = 1 rad/s, o = 0.002
rad/s, 6 = 107°. The parameter values for velocity-
force controller are: K, = diag([0.1,0.1,0.1]),K; =
diag([1,1,1]). For manipulation controller, oy = 0.01,
as = 0.01 and a3 = 1000. The desired parame-
ter values for impedance controller are: K¢ = 50 x
diag([1,1,1,0.2,0.2,0.05]), B4 = 5xdiag([1, 1, 1,0.02,0.02,
0.005]), and I = 50 x diag([1, 1, 1,0.02, 0.02, 0.005)).

6.3 Simulation Results

A lifting and rotating task is employed to verify the efficacy
of the proposed gaits planner and manipulation controller.
The desired object motion is to move along z axis by
11mm, and rotate around z axis with 0.2 rad/s.
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(a) Top view of the hand rotating an ellipsoid

(b) Lateral view of the hand rotating an ellipsoid

Fig. 6. The hand rotates an ellipsoid with the proposed
finger gaits planner. Snapshots are from left to right.
(a) is the top view, (b) is the lateral view.

Figure 5 illustrates the performance with/without the
proposed velocity-level gaits planner. The white and red
arrows indicate the initial and current rotational poses of
the object. The object can not be rotated over 90° without
the proposed gaits planner because of the hand manipu-
lability limitation, as shown in Fig. 5a. The object can be
continuously rotated with the proposed planner, which im-
proves both object grasp quality and hand manipulability,
as shown in Fig. 5b. The average computation time for
solving the dual-stage optimization based controller is less
than one millisecond for each time step.

The robustness of the proposed gaits planner to different
shapes is demonstrated by lifting and rotating an ellipsoid,
as shown in Fig. 6. An exactly same controller is employed
for ellipsoid manipulation. Figure 6a shows the top view
and Fig. 6b is the corresponding lateral view. Compared
with cylinder, the ellipsoid is less symmetric and the
surface normal has more change. The performance is
similar, except that the gaiting steps are smaller. This
is influenced by the velocity-force controller gain and the
curvature of the object. Despite the difference, the object
still be able to achieve continuous large-scale motion, as
shown in Fig. 6 and video Fan et al. (2016).

Figure 7 shows the pose errors of the object during the
lifting and rotating process by the proposed gaits planner.
The finger gaits planning starts around 2 seconds, due to
the decreasing hand manipulability. The pose errors do
not attenuate to zero since the changing of contacts in
finger gaits planning can cause disturbance to the object.
The maximum position error during the gait changing
process is 0.005 m (in gravity direction), and the maximum
orientation error is less than 0.02 rad (1.15°).

Figure 8 shows that the Q in (8) is positive during a
typical finger gaits planning period, which means that the
proposed velocity-level planner is able to improve the grasp
quality, i.e. @ in (5) is continuously increased in the finger
gaits planning.

Figure 9 shows the performance of manipulation controller
under object dynamics uncertainty and external distur-
bances. The inertia of the object is not necessary, since the
inertia term in (12) is cancelled by impedance control (11).
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Fig. 7. The position and orientation error of the object
during lifting and rotation task using the proposed
velocity-level gaits planner.
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Fig. 8. Optimized quality rate by our proposed linear
programming (8), in a typical finger relocation pro-
cess. The quality rate is positive during the execution
of (8), which means the grasp quality is improving.

Besides, the object is subject to 25% of mass uncertainty
and 2N external disturbance. The manipulation controller
is capable of driving the object to the desired pose.

7. CONCLUSION

This paper has proposed a dual-stage optimization based
controller, which includes a velocity-level finger gaits plan-
ner and a manipulation controller, to achieve real-time fin-
ger gaiting and manipulation. In the finger gaits planner,
we searched an optimal velocity to improve the grasp qual-
ity and hand manipulability, rather than directly finding
optimal contact points by nonlinear programming meth-
ods. The proposed planner is computationally efficient
and can be solved in real-time. Besides, the planner does
not rely on the exact shape of the objects, nor does it
require expensive 3D/6D tactile sensors. The presented
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Fig. 9. Illustration of modified impedance controller. The
manipulated object is subject to 25% mass uncer-
tainty and 2N external disturbance

manipulation controller can handle a certain amount of un-
certainties such as imprecise dynamic parameters and ex-
ternal disturbances. Simulations showed that our method
can achieve real-time finger gaiting, and realize large-scale
object motions that are infeasible without the proposed
gaits planner.

Currently, our method is limited to objects with smooth
surfaces. In the future, we plan to extend our method to
objects without smooth surfaces. Also, we would like to
incorporate contact point uncertainties caused by the noise
of 1D tactile sensors, remove the requirement of velocity
measurements, and perform experiments on a real robotic
hand.
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